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LElTER TO THE EDITOR 

Ising model on an icosahedral quasilattice 

Yutaka Okabe and  Komajiro Niizeki 
Department of Physics, Tohoku University, Aoba, Sendai 980, Japan 

Received 19 April 1990 

Abstract. The Ising model on the three-dimensional icosahedral quasilattice is studied by 
use of a Monte Carlo simulation. We treat both cases where the spins are located on the 
vertices of the lattice and the centres of the lattice. We investigate the critical phenomena 
on the basis of finite-size scaling. I t  is shown that the critical exponents are universal among 
regular lattices and quasilattices. The critical temperatures of both models are found to be 
higher than that of the simple cubic lattice though the (average) coordination numbers of 
the three lattices are all six. 

The discovery of quasicrystals has brought about a growing interest in the spin statistics 
in quasicrystals. The spin systems on the one-dimensional ( I D )  quasilattice can be 
solved with an  exact renormalisation approach (Achiam et a1 1986), and  interesting 
behaviour which comes from the characteristics of quasilattices was pointed out. It is 
more interesting to investigate the role of the quasiperiodicity and the self-similarity 
in phase transitions and  critical phenomena. Higher-dimensional systems should be 
studied for such a purpose. 

The Ising model on the ZD Penrose lattice was previously studied by means of an  
approximate renormalisation scheme (Godriche et a1 1986). Some special model was 
treated by an  exact approach (Choy 1988). The Monte Carlo simulation is a powerful 
method to obtain precise numerical information. The present authors (Okabe and  
Niizeki 1988a, b, c )  made the Monte Carlo simulation of the Ising the model on the 
Penrose lattice of a size up  to 439 204 sites. Other authors (Bhattacharjee et a1 1987, 
Miyajima et a1 1988, Amarendra et a1 1988, Oitmaa and  Johnson 1989) also studied 
the Ising model by the Monte Carlo method for smaller systems. Quite recently, the 
high-temperature expansion (Abe and Dotera 1989) and the coherent anomaly method 
(Kinoshita and Suzuki 1989) have been applied to the study of the Ising model on the 
Penrose lattice. It is to be noted that the Potts model on the Penrose lattice was studied 
by Monte Carlo simulation (Wilson and Vause 1989a, b). 

In  a previous Monte Carlo study of the 2~ Penrose lattice (Okabe and Niizeki 
1988a, b, c), we showed the universality of critical exponents and  the duality between 
the critical temperatures of dual lattices. We also pointed out that the critical tem- 
perature, which is a non-universal quantity, for the Penrose (dual Penrose) lattice is 
very close to that for the dice (Kagomt)  lattice. A similar behaviour was found in the 
study of the percolation threshold for the bond percolation problem of the Penrose 
and its dual lattices (Yonezawa et a1 1989). We can show that the high-temperature 
series coefficients of the Penrose lattice are numerically close to those of the dice 
lattice. This similarity of the local structure may give the reason for the closeness of 
the critical temperatures of the Penrose lattice and  of the dice lattice. 
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It is interesting to study spin systems on more realistic 3~ quasilattices. In this 
letter, we report the extension of the Monte Carlo study to the 3~ icosahedral quasilattice 
( I Q L ) .  An I Q L  is a 3~ set of points derived from a 6~ simple hypercubic lattice by the 
cut-and-projection method (for the structure of the IQL, see Henley (1986)). The 6~ 

lattice naturally forms a 6~ network whose coordination number is 12, where a network 
is composed of vertices and bonds linking them. The network is reduced, by the 
cut-and-projection, into a 3~ one. The coordination number of the 3~ network ranges 
from 4 to 12 and the average is 6. The 3~ network gives rise to a 3~ (Penrose) tiling, 
by which the 3~ space is filled with two types (prolate and oblate) of rhombohedra; 
vertices and edges of a rhombohedron coincide with those of the 3~ network. Note 
that two vertices linked by a bond in the network are not necessarily nearest to each 
other. We usually identify the 3~ network and the 3~ tiling with the IQL. 

We shall call the dual network to the 3~ tiling a dual IQL. A vertex of the dual IQL 

is located at the centre of a rhombohedron of the 3~ tiling and two vertices are linked 
by a bond if the corresponding two rhombohedra share a surface (a  rhombus). 
Obviously, the coordination number of the dual IQL is fixed to 6. Note that the density 
of the vertices of the dual I Q L  is exactly equal to that of the IQL, which follows from 
the fact that the inner solid angle of the eight vertices of a rhombohedron total to 477. 

Since the icosahedral point group has ten threefold axes, a prolate (or oblate) 
rhombohedron can assume ten orientations and the dual I Q L  can be divided into 10 
(or 20) sublattices if a prolate rhombohedron and an oblate one is not distinguished 
(or is). Two rhombohedra (of the same type of different types) never share a surface 
if their axes are parallel and, consequently, no bonds link two vertices belonging to 
the same sublattice of the dual IQL.  Note that the lengths of the bonds in the dual I Q L  

can assume three values in contrast to the case of the I Q L  where they are all equal. 
Numerical simulations are performed on finite systems; therefore, it is desired to 

make the size effect as small as possible. For this purpose, we employ the periodic 
boundary condition. Then the I Q L  must be modified slightly into a series of ‘periodic’ 
IQLS (Elser and Henley 1985) whose sizes, N,,  in the total lattice sites in a unit cell 
are 576, 2440, 10 336,. . . (note the recursion relation, N,,, = 4N, + N, - , ) ;  the golden 
ratio T = (1 +v‘3)/2 is approximated by a consecutive pair of Fibonacci numbers, 

An Ising model is defined for the I Q L  (more exactly, the network associated with 
it)  or its dual in such a way that the spins are located on the vertices and the 
ferromagnetic interactions between the spins are assigned to the bonds: 

R = - J  U,U, (a,  = *1) 
( !,I ) 

where the symbol (i, j )  denotes the bond between i and j in the network. Note that 
the two models on the I Q L  and its dual are actually not dual to each other in the sense 
of the duality relation where the Euler theorem holds (for the duality relation, see 
Syozi (1972)). We follow the usual Metropolis method of the Monte Carlo simulation. 
As in the case of the 2D Penrose lattice (Okabe and Niizeki 1988a, b, c), we apply the 
fast algorithm of multispin coding due to Bhanot et a1 (1986a, b). For the IQL, the 
coordination number ranges from 4 to 12; the energy difference at a spin-update trial 
takes 25 values. It is straightforward to apply the multispin coding, although the logical 
operations become complicated. The use of a vector computer is practically efficient. 
The calculation is fully vectorised if the lattice is decomposed into appropriate inter- 
penetrating sublattices; such a sublattice decomposition is simply guaranteed for the 
I Q L  because it is a bipartite lattice. On the other hand, the dual I Q L  can be divided 
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into ten interpenetrating sublattices as mentioned above. With these techniques we 
can realise the speed of the Monte Carlo simulation of the same order as that for the 
regular lattice. The multispin coding of simulation is much simpler for the dual IQL 

because all the coordination numbers are fixed to be 6 ,  which is the same as the simple 
cubic lattice. 

We measured the square of the magnetisation per spin ( m 2 ) .  In figure 1, we show 
the temperature dependence of for the ferromagnetic Ising model on the I Q L  

and on its dual lattice for a wide range of temperature. The lattice sizes are shown in 
the inset. The largest lattice has 43 784 sites. We did two independent runs for each 
size and temperature, each of 10000 sweeps. The first 2000 sweeps were excluded 
when taking an average. In  the limit N + CO, the quantity leads to the spontaneous 
magnetisation for T <  T,, and ( m 2 )  becomes the susceptibility X T / N  for T >  T,. We 
clearly see the second-order paramagnetic-ferromagnetic phase transition for both 
quasilattices from the figure. The critical temperature for the simple cubic lattice is 
shown by an arrow, which is lower than Tcs for both quasilattices. This point will be 
discussed later. 

Our main focus is to investigate the critical properties. We performed high-statistics 
simulations for the temperatures near T,. The temperature dependence of (m') for 
4.8 S T / J  5.1 for the I Q L  and for 5.5 S TIJ s 5.8 for the dual I Q L  are shown in 
figure 2. Simulations were made for 400 000 sweeps, and the first 80 000 sweeps were 
discarded when taking an average. To estimate the critical temperature and the critical 
exponent with these data, we use a phenomenological Monte Carlo renormalisation 
group analysis due to Barber and Selke (1982). We examine the ratio of the values of 
( m 2 )  for different sizes. We plot the temperature dependence of the quantity 

for both quasilattices in figure 3, where the linear size L is given by 'v%, and d = 3 .  
We note that R + 0, for T + CO, and R + d for T + 0. All pairs [ N, N ' ]  are expected to 
intersect at a single point if corrections to finite-size scaling are negligible. The critical 

I 
T /J 

7 

Figure 1. Temperature dependence of d ( m ' )  for the ferromagnetic k i n g  model on the 
icosahedral lattice ( a )  and its dual lattice ( b )  for a wide range of temperature. The lattice 
sizes are shown in the inset. The arrow gives T, for the simple cubic lattice. 
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N :  
0 8  + 2440 0 576 

0 10 336 + 2440 
+ 43 78L 0 10 336 

x 43784 
0 6  0.6 

4.8 4.9 5.0 5.1 5.5 5.6 5.7 5.8 

T/J T/J  - 
Figure 2. Temperature dependence of v(m2)  for the ferromagnetic Ising model on the 
icosahedral lattice ( a )  and its dual lattice ( b ) ;  the results of the high statistics simulations 
near the critical temperature. The lattice sizes are shown in the inset. 

temperature T, and the magnetic exponent 2yH - a‘( = y /  v )  are given by the abscissa 
and  the ordinate of the crossing point, respectively. From figure 3, we may estimate 
the critical temperature and  the magnetic exponent for both quasilattices. In table 1, 
the estimated T, and 2yH -a’ are tabulated. 

We emphasise that the obtained critical exponent yH is no different from that of 
the 3~ regular lattices within the errors of simulation. We confirmed the universality 
of critical exponents for 3~ quasilattices, which is the same conclusion as obtained for 
2~ quasilattices. The estimated Tcs for both quasilattices are higher than that of the 
simple cubic lattice, T,/J = 4.512, although the average coordination numbers of these 

I I I I I I I I 

- 
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t [ 2 4 4 0 ,  10 3361 
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Figure 3. Temperature dependence 
the dual icosahedral lattice ( b ) .  The 
[ N,  N ’ ] ,  are given in the inset. 
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of the ratio of (m’) for the icosahedral lattice ( U )  and 
quantity R [ N ,  N ’ ]  is defined by (2). The sizes of pairs, 

T/J 
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Table 1. The estimated T, and 2yH - d for the icosahedral lattice and the dual icosahedral 
lattice. For comparison we also give the data for the simple cubic lattice. 

Lattice 

Icosahedral 4.972 * 0.06 2.00 * 0.05 
Dual icosahedral 5.650i0.08 2.01 k0.05 
Simple cubic 4.512 1.97 

three lattices are the same. In  the 2~ case, the critical temperature for the square lattice 
is in the middle of the Penrose lattice and the dual Penrose lattice because of the 
duality relation, 

s inh(2J l  T,) s inh(2J l  Tg) = 1. (3)  

In the present 3~ case, this duality relation is not satisfied because the Euler theorem 
does not hold in the present dual lattice. There was a conjecture that the lattice which 
has a distribution in the coordination number z has a higher T, than the homogeneous 
lattice with the same z for 2~ lattices (Syozi 1972). It is not the case for 3~ lattices 
because the T, for the dual I Q L  is higher than that for the IQL. The high-temperature 
series may help the study of the local structure of the lattice, i.e, the critical temperature. 

I n  figure 4, we show a finite-size scaling plot 

( , 2 ) L L Z ‘ d - ’ H ’  =f( f L ’ T )  t = ( T -  Tc) /  T,. (4) 

The thermal exponent yT is the inverse of the correlation length exponent; yT=  1/v.  
Figure 3 shows that choosing TC=4.975, yH =2.485 and y,= 1.59 gives a fairly good 
scaling plot for the IQL,  where we have used the critical exponents of 3~ regular lattices. 
In  the case of dual IQL, we chose T,=5.655 and the same parameters for critical 
exponents. 

0 

+ 
+ 

P 

N. 

+ 2440 
0 10 336 
x 43 784 

1 

I 
’ +  - *% - 

* Q  0 

0. I I I I I , 
- 4  - 2  0 2 4 

N =  
576 

+ 2440 
o 10 336 
x 43 784 

i +a ** 
Q m  ’ XQ 

0 0  - 4  - 2  0 4 

t i y -  t L ” .  

Figure 4. Finite-size scaling plot; (m2)LL2 ’ ‘ ’ - 1 i i ’  against fL’r with f = ( T -  Tc)/  T,, The three 
parameters are chosen as T, = 4.975, yH = 2.487 and yT = 1.51 for the icosahedral lattice 
( a )  and T, = 5.655, yH = 2.487 and yT = 1.51 for the dual icosahedral lattice ( h ) .  The critical 
exponents are those of the 3~ regular lattices. 
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In summary, we have studied the critical phenomena of the Ising spins on the 3~ 

icosahedral lattice by use of a Monte Carlo method. It has been shown that the critical 
exponents are universal among regular crystals and quasicrystals. We have also dis- 
cussed the critical temperatures for the icosahedral quasilattice and its dual lattice. 
We finally remark that the antiferromagnetic spin systems on the dual icosahedral 
lattice are interesting subjects because of a frustration. 

The preliminary result of this study was reported at the Taniguchi Symposium on 
Quasicrystals, November 14-18, 1989 (Okabe and Niizeki 1990). 
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